
Unfavorable SNR in Forward Gradients

Charles Frye

February 2022

The forward gradient method of [1] allows the computation of approximate
gradients without the need for a separate “backwards pass”.

The backwards pass has the same computational complexity, in the big-
O sense, as the forwards pass, and so doesn’t change the complexity class of
optimization algorithms that require forwards passes. But the backwards pass
typically incurs a fixed (low, i.e. 2-4x) multiplicative cost relative to forward
computation and occasionally requires a large amount of memory, so there can
be meaningful practical benefits to avoiding it.

There is, however, a catch to the forward gradient method that is not clearly
stated in [1]: the signal-to-noise ratio (SNR) using the forward gradient method
is at most O (1/n), where n is the number of parameters.

High SNR is good, and so this bound is bad news. Noise increases the
effective Lipschitz constant and so decreases the highest stable learning rate.
Lower learning rates mean slower convergence (in iteration count), which can
dwarf any gains from faster iterations. Specifically, this bound implies that for
any model, once n is large enough, descent by forward gradients will converge
more slowly in wall time than will backward gradients1.

We therefore should expect (and do observe) poorer performance when di-
rectly substituting a forward gradient oracle in for a backwards gradient oracle.
Perhaps additional tricks, like gradient clipping or a special optimizer, might
make the forward gradient method more applicable in more settings.

Specifically, denoting the (full) gradient ∇ and its forward estimate g, we
have that each entry of g has variance approximately equal to2 the gradient
norm:

V
[
g
]
i
≈ ∥∇∥2 (1)

Assuming that the gradient ∇ has O (1) norm and homogeneous entries, we
can obtain an asymptotic, in parameter count, expression for the SNR:

∇2
i

V
[
g
]
i

≈ 1/n

∥∇∥2
= O (1/n) (2)

1Space constraints might still favor forward gradients.
2In the exact expression it is slightly higher.

1

Forward Gradient Descent

Let ∇ be the full-batch gradient. We calculate an estimator g as in the forward
gradient method [1]:

g
def
=

(
∇⊤v

)
· v (3)

where v ∼ N (0, I) is a random Gaussian vector of length n. Effectively, the
forward gradient method produces a biased random walk, taking larger steps
when the randomly chosen vector v happens to align with the gradient. ∇⊤v
can be calculated efficiently as part of the same forward pass that computes the
loss, as it is a Jacobian-vector product.

It is proven in [1] that the expectation of g is ∇. This is sufficient to prove
convergence of the algorithm by any number of established means, treating the
forward gradient as the (noisy) gradient oracle.

But what about the variance?
We can break down the variance of the ith entry of g as

V
[
gi
]
= V

[(
∇⊤v

)
· vi

]
(Def’n of g)

= V
[∑

j

vjvi∇j

]
(Def’n of ⊤)

= V
[
v2i∇i

]
+ V

[∑
j ̸=i

vjvi∇j

]
+ 2 · Cov

v2i∇i,
∑
j ̸=i

vjvi∇j

(Variance of sum formula)

Notice that the variance of a single entry gi depends on a (random) sum over
all of the entries.

The covariance term is 0:

Cov

v2i∇i,
∑
j ̸=i

vjvi∇j

 = E
[
v2i∇i ·

∑
j ̸=i

vjvi∇j

]
− E

[
v2i∇i

]
E
[∑
j ̸=i

vjvi∇j

]
(Def’n of covariance)

= E
[
v2i∇i ·

∑
j ̸=i

vjvi∇j

]
(E

[
v2i
]
= 0)

= ∇⊤ E
[
v2
]

(Def’n of ⊤, Linearity of E)
= 0 (E

[
v2j
]
= 0)

and so we have:

V
[
gi
]
= V

[
v2i∇i

]
+ V

[∑
j ̸=i

vjvi∇j

]
(4)

We tackle the simpler term first:

2

V
[
v2i∇i

]
= ∇2

i V
[
v2i
]

(Scaling rule for V)

and notice that vi is a unit normal random variable. Products of unit normals
follow distributions from the χ2 family. These distributions are indexed by the
degree-of-freedom parameter k and their variances are given by 2k. In this case,
k = 1 and so the variance is 2.

V
[
v2i∇i

]
= 2 · ∇2

i (V
[
χ2(1)

]
= 2)

Now we tackle the sum term:

V
[∑
j ̸=i

vjvi∇j

]
=

∑
j ̸=i

V
[
vjvi∇j

]
+ 2 ·

∑
j ̸=i̸=k, j<k

Cov (vjvi∇j , vkvi∇k)

(Variance of sum formula)

Switching things up this time, we try the harder term first and peek into the
covariances in the sum:

Cov (vjvi∇j , vkvi∇k) = ∇j∇kCov (vjvi, vkvi) (Bilinearity of the covariance)

Cov (vjvi, vkvi) = E
[
vjvivivk

]
+ E

[
vjvi

]
· E

[
vkvi

]
(Def’n of the covariance)

= E
[
vj
]
E
[
vivi

]
E
[
vk
]
+ E

[
vj
]
E
[
vi
]
· E

[
vk
]
E
[
vi
]

(Product rule for E)
= 0 (Expectations of vi, vj , and vk)

That is, the covariance terms are all identically 0,3 so we can return our
focus to the simpler term in the variance of the sum of products:

V
[∑
j ̸=i

vjvi∇j

]
=

∑
j ̸=i

V
[
vjvi∇j

]
+ 0 (From above)

=
∑
j ̸=i

∇2
j V

[
vjvi

]
(Scaling rule for V)

(5)

We again have a product of normals, but it’s not quite a χ2. Instead we use
a trick4 to express vivj as the difference of two independent χ2 variables, which
is again χ2 − distributed

3Intuition: knowing the value of vjvi, e.g. that it is far from its mean, does help you
guess the value of vkvi, e.g. that it will be far from its mean, so the variables are dependent.
But knowing which direction vjvi has deviated from its mean doesn’t help you guess which
direction vkvi has deviated from its mean, since the signs of vj and vk could differ or match
with equal probability, and therefore the variables are uncorrelated.

4Read more at https://math.stackexchange.com/questions/101062/is-the-product-of-two-
gaussian-random-variables-also-a-gaussian

3

V
[
vjvi

]
= V

[
1

4
(vi + vj)

2 − 1

4
(vi − vj)

2

]
(Clever rewrite trick)

=
1

16

(
V
[
(vi + vj)

2
]
+ V

[
(vi − vj)

2
])

(Sum of variance for independent r.v.s)

=
1

4

(
V
[
(vi + vj)

2/2
]
+ V

[
(vi − vj)

2/2
])

(Normalize to unit variance, pull out factor of 4)

=
1

4
· 2 + 1

4
· 2 = 1 (V

[
χ2(1)

]
= 2)

We can now combine our two expressions for the variance terms in the sum-
of-variances decomposition

V
[
gi
]
= V

[
v2i∇i

]
+

∑
j ̸=i

∇2
j V

[
vjvi

]
(6)

= 2 · ∇2
i +

∑
j ̸=i

∇2
j (7)

When n is large, the i ̸= j sum predominates, and so we can introduce the
approximation

V
[
gi
]
= 2 · ∇2

i +
∑
j ̸=i

∇2
j (8)

≈
∑
j

∇2
j = ∥∇∥2 (9)

Is this so bad? At first glance, things look fine – the variance is finite and it’s
on the scale of the gradient norm, which is often manipulated to be O(1) to
obtain favorable numerics in optimization.

But consider what this means for the signal-to-noise ratio: if the gradient
norm is of fixed size, the entries must be getting smaller as more parameters are
added to the model. If they are homogeneous, each ∇i should be of absolute
value around 1√

n
, and so we obtain

∇2
i

V
[
g
]
i

≈ 1/n

∥∇∥2
= O (1/n) (10)

as desired.

Commentary

The proof above, like [1], assumes full-batch gradients, rather than mini-batch
gradients. Experiments and rough calculations suggest that the problem of
forward gradient variance becomes worse in the stochastic setting.

4

We note that, because it looks like a product of normals, g has unfavorable
characteristics in its higher moments, not just in its variance (or second mo-
ment). In simulation, we observed highly kurtotic (heavy-tailed) distributions
with prominent peaks at 0.

There are two intuitions for why this is the case: one at the level of individual
entries and one at the level of the entire vector. When the randomly drawn value
of vi is small, the gradient value is multiplied by the much smaller value v2i and
vice versa when the randomly drawn value of vi is large. Alternatively, as the
dimension of the space increases, two randomly chosen vectors become increas-
ingly orthogonal. The inner product ∇⊤v thus has a very sparse distribution
and the vectors ∇⊤v · v have norms with a very right-skew distribution.

Occasional large parameter updates produced by heavy-tailed noise can
cause numerical issues for gradient descent algorithms, e.g. by throwing the
parameters into an area of the function where the local Lipschitz constant is
much higher, turning a convergent learning rate into a divergent one.

These distributional issues suggest that an alternative distribution for the
entries of v might help speed up forward gradient. Without a priori information
about the gradient vector, the isotropy of the unit normal is a helpful property;
an anisotropic distribution might be even less likely to produce vectors v that .
Note also that the proof of unbiasedness in [1] requires that the components of
the vector be independent, and the unit normal is the only isotropic distribution
with independent components.

One useful form of anisotropic distribution would be to produce probing
vectors v that are more likely to point in the direction of the gradient. Indeed,
if the distribution of v is a Dirac delta at ∇, the variance of g drops to 0 and
forward gradients align perfectly with true gradients. Of course, in that case
there is no need to compute a gradient estimate, because the gradient is already
at hand, but perhaps there is a happy medium between complete ignorance
and complete knowledge of the gradient where the forward gradient becomes
optimal.

References

[1] Atılım Güneş Baydin, Barak A. Pearlmutter, Don Syme, Frank Wood, and
Philip Torr. Gradients without backpropagation, 2022.

5

